第6章 知識(第2/8 頁)
項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。3多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式\/完全平方公式
整式的除法:1單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式裡含有的字母,則連同他的指數一起作為商的一個因式。2多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:1整式A除以整式b,如果除式b中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。2分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:1同分母分式相加減,分母不變,把分子相加減。2異分母的分式先通分,化為同分母的分式,再加減。
分式方程:1分母中含有未知數的方程叫分式方程。2使方程的分母為0的解稱為原方程的增根。
b、方程與不等式
1、方程與方程組
一元一次方程:1在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。2等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法\/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高係數為2的方程
1)一元二次方程的二次函式的關係
大家已經學過二次函式(即拋物線)了,對他也有很深的瞭解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函式來表示,其實一元二次方程也是二次函式的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角座標系中表示出來,一元二次方程就是二次函式中,圖象與x軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函式有頂點式(-b\/2a,4ac-b2\/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函式的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根x1={-b+√[b2-4a
本章未完,點選下一頁繼續。